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Parameter mismatches and perfect anticipating synchronization in bidirectionally
coupled external cavity laser diodes
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We studyperfectchaos synchronization between two bidirectionally coupled external cavity semiconductor
lasers and demonstrate that mismatches in laser photon decay rates can explain the experimentally observed
anticipating time in synchronization.
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Chaos synchronizatiofi] is of fundamental importance the electric field of external cavity laser diodes is provided
in a variety of complex physical, chemical and biological by the widely utilized Lang-Kobayashi equatiofi€]. Sup-
systemd2]. Application of chaos synchronization has beenpose that the master laser is described by the equations
advanced in secure communications, optimization of nonlin-
ear system performance, modeling brain activity and pattern

recognition[2]. Time-delay systems are ubiquitous in nature, dE; (1+1ay) | Gi(N;—Ngy

technology and society because of finite signal transmission dar 2 1+5,E,2 — 71| E1(t)

times, switching speeds, and memory effd@p Therefore =1

the study of chaos synchronization in these systems is of +KEq(t— 7)) exp(—1wTy)

considerable practical significance. Because of their ability

to generate high-dimensional chaos, time-delay systems are TkaEa(t—m)exp—1w7y),

good candidates for secure communications based on chaos

synchronization. In this context particular emphasis is given dN, G,(N;—Noy)

to the use of chaotic external cavity semiconductor lag8rs TS =J1— Ye1N1— —2|E1|2, (1)
Following the discovery of anticipating synchronization t 1+s,/Eq]

by Voss[5], Masoller studied theoretically and numerically

anticipating synchronization in unidirectionally coupled la- is coupled bidirectionally with the slave laser described by
sers and showed that the anticipating time should be equal ®ruations

the difference between round-trip time of the light in the

transmitter’s external cavity and the time of flight between

the laser$6]. The first experimental observation of anticipat- dE, (1+1ay) | Ga(N,—Ngy)

ing synchronization between two bidirectionally coupled ex- ar 2 1+5,|E,? — 72| Bao(D)

ternal cavity laser diodes was reported recefiflly In a bi- 2i=2

directional system such anticipating chaos is rather robust +KoEo(t— 1) exp— 1w Ty)

but it has proved to be rather difficult to obtain a reproduc-

ible demonstration of anticipating synchronization in unidi- tksEi(t—m)exp(—1w7),

rectionally coupled laser diodes. It is noted also that it was

found experimentallyf7] that the solitary receiver laser an- dN, Go(No—Ngy)

ticipates the chaotic transmitter by the time of flight between gt J2 YeaNa— S |Eal?, 2
the lasers. At present there is no full theoretical explanation =

of the experimental results.

In this Brief Report we demonstrate the possibilitypei- ~ Where E; , are the slowly varying complex fields for the
fect chaos synchronization between two bidirectionallymaster and slave lasers, respectivély; are the carrier den-
coupled external cavity semiconductor lasers. We demonsities; y1, are the cavity lossesy; , are the linewidth en-
strate that mismatches in laser photon decay rates can eRancement factorsG, , are the optical gainsk, , are the
plain the time of flight anticipating time synchronization be- feedback levelsk; is the coupling ratew is the optical
tween the laser diodes. In a recent pap8t we have frequency without feedbacko frequency detuning between
demonstrated the role which parameter mismatches play ithe two lasers 7, is the round-trip time in the external cav-
the explanation of the coupling-delay lag time synchronizaity; 7, is the time of flight between the master laser and the
tion in unidirectionally coupled systems. Knowledge of theslave laser-coupling delay timd; , are the injection cur-
exact time shift between the synchronized states is of obvir:ents;y,;fe2 are the carrier lifetimess, , are the gain satura-
ous considerable practical importance for the recovery ofion coefficients.
message at the receiver of a chaotic communication system We show that mismatches between the master and slave
[4,9]. laser photon decay ratesg # v, can result in the experimen-

An appropriate framework for treating the evolution of tally observed time of flight anticipating synchronization

1063-651X/2002/6@.)/0172063)/$20.00 66 017206-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW 16, 017206 (2002

BS1 NDF

MLgo I

M1 klEl(t_Tl)exq_|(1)7'1):kgEl(t_ZTz)eXF(_HJJTz)
®)

are met. One can easily rewrite conditio) in the more
appealing form

4k3
(y1—v2)?=

BS2 \ Ol1 1+a?

In general, it is unreasonable to impose conditions on the

chaotic transmitter itself as in E¢p). Fortunately, at least in
py CA i h icti !
certain cases no such restrictions are needed. For example,

assumingr; =27, one finds that the perfect synchronization
manifold Eq.(3) exists fork;=k; and wm,=2mn (where
n=0,1,2...). We also notice that the synchronization

M2
v S : el
manifolds 1,=1,, and I,=1,, . are identical forr;
BS3 =275, but in general| 1=lar o) is not the synchronization
PD2

(6)

SL

manifold. Our approach, in principle allows also for antici-
pating synchronization with time of flight anticipation time,
even in the case when, = 7,, as was reported experimen-
tally [7]. The thrust of this communication is to demonstrate
the possibility of achieving perfect chaos synchronization in
FIG. 1. ML, master laser; SL, slave laser; BS1-3, beam splittersthe physical system studied in RgT]. It is clearly of some
NDF, neutral density filter; OI1-2, optical isolators; M1-2, mirrors; importance to examine the stability of the identified synchro-
CA, coupling attenuator; PD1-2, photodetectors. nized state. However that would require substantial numeri-
cal investigations which are beyond the scope of the present
time. Mathematically the intensities of the master and slavérief Report. We intend to present results of detailed numeri-
lasers should be related by cal simulations of Eqs(1) and(2) in a separate work.
We conclude this Brief Report with the following re-
marks. Usually parameter mismatches are considered to have
Ilzlszz. ) a detrimental effect on the synchronization quality between
) coupled identical systems: in the case of small parameter
Throughout this papex,=x(t—7). We also assume an mjismatches the synchronization error does not decay to zero
analogous synchronization manifold for the carrier densitiesyjith time, but can show small fluctuations about zero or even
N1=N_ . Using Eq.(2) we write the dynamical equation 3 nonzero mean valué]. Larger values of parameter mis-
for the Ea-, in the following manner: matches can even result in the loss of synchronization. How-
ever it appears that in reality the relation between chaos syn-
chronization in time-delayed systems and parameter

dEz,, (1+1ay) [ G2(N2,,—No) mismatches is quite intricate and complex. In a recent paper
dt 2 1+s,)E, |2 — 72| Ear, [8] we have shown that parameter mismatches can change
21=27 the time shift between the synchronized states; moreover we

have presented an example where the presence of parameter
mismatches is thenly way to achieve chaos synchronization

In accordance with experimerii&] we consider the case of a between two unidirectionally coupled time-delayed systems.
P In the present Brief Report we have shown that perfect an-

solitary slave laser, i.ek,=0. The experimental setup from ticipating synchronization between two bidirectionally

Ref.[7] is reproduced in Fig. 1. It is assumed that, except forC upled external cavity laser diodes is possible in the pres-

the photon_ decay rates, the_laser parameters are identic%hce of parameter mismatches. As knowledge of the time
Then we find that the equations f@; andE,,, will be  gpig henveen the synchronized states is of considerable prac-
identical and therefore perfect synchronizati@® will be  tical importance for the message recovery in communica-

+ kgEl‘szqu —1 (,L)Tz) .

possible if conditions tions and information processing using chaos control meth-
ods, further research on relation between chaos
(1+1a) (1+1a) synchronization and parameter mismatches would be desir-
- ksexp(— 1w Ty) == 72 (4)  able.
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